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E�cient solution of the steady-state Navier–Stokes equations
using a multigrid preconditioned Newton–Krylov method
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SUMMARY

An inexact Newton’s method is used to solve the steady-state incompressible Navier–Stokes equations.
The equations are discretized using a mixed �nite element approximation. A new e�cient precondi-
tioning methodology introduced by Kay et al. (SIAM J. Sci. Comput., 2002; 24:237–256) is applied
and its e�ectiveness in the context of a Newton linearization is investigated. The original strategy was
introduced as a preconditioning methodology for discrete Oseen equations that arise from Picard lin-
earization. Our new variant of the preconditioning strategy is constructed from building blocks consisting
of two component multigrid cycles; a multigrid V-cycle for a scalar convection–di�usion operator; and
a multigrid V-cycle for a pressure Poisson operator. We present numerical experiments showing that the
convergence rate of the preconditioned GMRES is independent of the grid size and relatively insensitive
to the Reynolds number. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The incompressible Navier–Stokes equations form one of the most important models in Com-
putational Fluid Dynamics. The development of numerical solution methods is accordingly a
very active �eld of research. Non-linear solution methods such as Newton-like methods have
been widely used. We give three examples here.
Engelman [1], applied quasi-Newton methods. These methods are compared with the com-

monly employed successive substitution and (exact) Newton procedures. Ghia et al. [2] con-
sidered a non-linear multigrid method to solve a 2-D driven cavity problem in a square domain
with Reynolds number as high as 10 000 and meshes consisting of as many as 257× 257
points. An inexact Newton’s method was used by McHugh and Knoll in Reference [3].
Two conjugate gradient-like algorithms, the transpose-free quasi minimal residual algorithm
(TFQMR) and the conjugate gradient squared algorithm (CGS) preconditioned by incomplete
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lower–upper (ILU) factorizations are used to solve the linear systems arising on each Newton
iteration. Subsequently, Knoll and Rider [4] used the 2-D driven cavity as a test problem and
solved it using the Newton–Krylov algorithm. In particular, the application of multigrid as a
preconditioner of a matrix-free Newton–Krylov method was studied.
In this paper we consider the numerical implementation of an e�cient preconditioning

strategy for the linearized incompressible Navier–Stokes equations. The method builds upon
the preconditioning methodology originally proposed by Kay and Loghin [5] for the Oseen
equations arising from Picard linearization, and subsequently analysed by Silvester et al. [6]
and Elman et al. [7]. The strategy has two basic building blocks; a multigrid V-cycle for a
scalar convection–di�usion operator, and a multigrid V-cycle for a pressure Poisson operator.
Our aim here is to study the performance of this preconditioning methodology for the solution
of a linear system involving the Jacobian matrix resulting from a Newton linearization.
We consider a standard �nite element discretization of the Navier–Stokes equations. We

employ an inexact Newton method to solve the non-linear equations. The linearized system is
solved by the right preconditioned GMRES method. We shall restrict our implementation to
the stationary case in two space dimensions. Our observations are that the number of iterations
for convergence is independent of the mesh size, but slowly increase as Reynolds number is
increased.
The outline of this paper is as follows. In the remainder of this section we present the

standard weak formulation of the steady-state Navier–Stokes equations. Non-linear iteration
methods and our preconditioning strategy will be described in Section 2. Section 3 will
present some computational experiments demonstrating the computational e�ciency of our
preconditioning approach, and illustrating the e�ect of di�erent choices of the forcing term
on the convergence of the inexact Newton method. We go on to compare results with those
published by Ghia et al. [2] and Knoll et al. [4], in Section 4. In the last section, we give
some conclusions.

1.1. The stationary Navier–Stokes equations

We consider the steady-state incompressible Navier–Stokes equations written in a primitive
variable formulation in terms of the velocity u and the pressure p:

−�� u + u · ∇u +∇p= f in � (1)

∇ · u=0 in � (2)

u= g on � (3)

where the scalar �¿0 is a ‘viscosity’ parameter, which in a non-dimensional setting is in-
versely proportional to the Reynolds number Re=1=�. f is the given body force per unit
mass; also g is a given function such that

∫
� g · n d�=0, where n is the unit vector normal

to the boundary �.

1.1.1. Weak formulation. We �rst consider the case of the homogeneous Dirichlet boundary
condition

u= 0 (4)
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Having H1
0(�) (a Sobolev space of vector valued function with square integrable derivatives

of order up to one and L20(�) (the standard space of real valued functions that are square
integrable over �) as the velocity and the pressure test spaces, the standard weak formulation
of (1), (2) and (4) is obtained by multiplying Eq. (1) by a vector test function and integrating
over the �ow domain. Similarly, the continuity equation or incompressibility constraint (2) is
multiplied by a scalar test function and integrated over the domain. Given f ∈H−1(�), we
seek u∈H1

0(�) and p∈L20(�) satisfying

a0(u; C) + a1(u; u; C) + b(C; p) = ( f ; C) ∀C∈H1
0(�) (5)

b(u; q) = 0 ∀q∈L20(�) (6)

where

a0(u; C) = �
∫
�
∇u · ∇C d� ∀u; C∈H1

0(�)

a1(w; u; C) =
∫
�

d∑
i; j=1

wj
@ui

@xj
vi d� ∀w; u; C∈H1

0(�)

b(C; q) =−
∫
�
q∇ · C d� ∀C∈H1

0(�) and ∀q∈L20(�)

(7)

Furthermore, de�ning

a(w; u; C)= a0(u; C) + a1(w; u; C) (8)

the weak formulation (5) and (6) can be written in a simpler form: �nd u∈H1
0(�) and

p∈L20(�) such that

a(u; u; C) + b(C; p) = ( f ; C) ∀C∈H1
0(�) (9)

b(u; q) = 0 ∀q∈L20(�) (10)

For the general case of a non-homogeneous Dirichlet boundary condition (3), we introduce
u∗ ∈H1 such that u∗= g on �, then the standard weak formulation of (1)–(3) is de�ned as
follows: Given f ∈H−1(�) and g ∈H1=2(�), �nd u∈H1(�) such that u − u∗ ∈H1

0(�) and
p∈L20(�) satisfying

a(u; u; C) + b(C; p) = ( f ; C) ∀C∈H1
0(�) (11)

b(u; q) = 0 ∀q∈L20(�) (12)

Full details concerning weak formulations of the Navier–Stokes system may be found in
Reference [8, pp. 284–362].

1.1.2. Finite element discretization. To generate a discrete system, we use the standard �-
nite element discretization of (5)–(6) by choosing �nite element subspaces Xh

0⊂H1
0(�) and
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Mh ⊂L20(�), where h is a representative mesh parameter, and seek uh ∈Xh
0 and ph ∈Mh

satisfying

a(uh; uh; Ch) + b(Ch; ph) = ( f ; Ch) ∀Ch ∈Xh
0 (13)

b(uh; qh) = 0 ∀qh ∈Mh (14)

The stability and optimal accuracy of this discrete approximation is governed by the
following �ve conditions. The �rst three of these are continuity conditions, as follows:

|a0(uh; Ch)|6 �1‖uh‖1‖Ch‖1 uh; Ch ∈Xh
0

|b(Ch; qh)|6 �2‖Ch‖1‖qh‖0 Ch ∈Xh
0; qh ∈Mh

|a1(wh; uh; Ch)|6 �3‖wh‖1‖uh‖1‖Ch‖1 wh; uh; Ch ∈Xh
0

where �1; �2 and �3 are constants whose values are independent of h.
The fourth condition is a coercivity condition

a0(zh; zh)¿�a|zh|21 ∀zh ∈Zh

where

Zh= {Ch ∈Xh | b(Ch; qh)=0 ∀qh ∈Mh}
and �a is a constant whose value is independent of h.
The �fth condition is known as the inf–sup condition and is given by

sup
Ch∈Xh

0

b(Ch; qh)
|Ch|1 ¿�b‖qh‖0 ∀qh ∈Mh (15)

where �b is a constant whose value is independent of h. By assuming that the chosen �nite
element spaces satisfy the inf–sup condition, the existence and uniqueness of a solution to
(13)–(14), for su�ciently small Re=1=�, follows. See Reference [8, pp. 279–283] for details.

1.2. Newton linearization

Once the �nite element spaces are prescribed, the discrete problem (13)–(14) reduces to
solving a system of non-linear algebraic equations which can be solved by iteration. A simple
iterative technique to solve this non-linear problem can be de�ned as follows: choose uh0 ∈Xh

0;
for every k¿1, if uhk−1 ∈Xh

0 is known, �nd {uhk ; ph
k } such that

a(uhk−1; u
h
k ; Ch) + b(ph

k ; Ch) = ( f ; Ch) ∀Ch ∈Xh
0

b(uhk ; q
h) = 0 ∀qh ∈Mh

(16)

In this Picard iteration method, the velocity computed in the preceding iteration is substituted
into the convective term. Hence, the Navier–Stokes equations are linearized such that the
coe�cient matrix is changed at each step.
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For each k this discretization leads to a system of linear equations. To see this, let �∈R2
and let {�i}, i=1; : : : ; m, and {( j; 0); (0;  j)}, j=1; : : : ; n be the basis for the pressure and
velocity trial spaces Mh and Xh, respectively. Then

ph
k =

m∑
i=1

�k
i �i and uhk =(u

k
1; u

k
2)=

(
n∑

j=1
�k
j  j;

2n∑
j=n+1

�k
j  j−n

)
(17)

for some constants �k
i , i=1; 2; : : : ; m, and �k

j , j=1; 2; : : : ; 2n. Hence, the approximate problem
is equivalent to the linear algebraic system of (2n+m)× (2n+m) matrix system(

Ak BT

B 0

)(
uk

pk

)
=

(
f

g

)
(18)

Here Ak ∈R2n×2n is the vector valued discrete convection–di�usion operator with entries

[A]ki; j=




a(uk−1;  j;  i) 16i; j6n

a(uk−1;  j−n;  i−n) n+ 16i; j62n

0 otherwise


 (19)

The matrix B∈Rm×2n is the divergence matrix de�ned by

[B]i; j=



−
∫
�

@ j

@x
�i d� 16i6m 16j6n

−
∫
�

@ j−n

@y
�i d� 16i6m n+ 16j62n




(20)

The �rst block of the right hand side vector is simply the 2n-vector given by

[f]i=

{
(fx;  i) 16i6n;

(fy;  i−n) n+ 16i62n

}
+ [f�]i (21)

where the vector f� arises from non-zero Dirichlet conditions on the velocity. The vectors
uk ∈R2n and pk ∈Rm are the coe�cients of the discrete velocity and pressure respectively.
Furthermore, the vector g also arises from any inhomogeneous boundary conditions on the
velocity.
Newton’s method, for the discrete system (13)–(14) is de�ned as follows. We choose an

initial guess uh0 such that u
h
0|� = gh, where gh is an approximation to g on �, and generate

the sequence {uhk ; ph
k } for k=1; 2; : : : ; by solving the linear problem

aN (uhk−1; u
h
k ; Ch) + b(ph

k ; u
h) = ( f ; Ch) + a1(uhk−1; u

h
k−1; Ch) ∀Ch ∈Xh

0

b(uhk ; q
h) = 0 ∀qh ∈Mh

(22)

where

aN (wh; uhk ; Ch)= a(wh; uhk ; Ch) + a1(uhk ;w
h; Ch) (23)
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Using the same basis functions as in (17), the corresponding linear system will be(
Ak

N BT

B 0

)(
uk

p

)
=

(
f kN
g

)
(24)

where Ak
N =Ak + Nk . The matrix Nk ∈R2n×2n and vector f kN arise from the a1(uhk ; u

h
k−1; Ch)

and ( f ; Ch) + a1(uhk−1; u
h
k−1; Ch) terms, respectively. Here the entries of Nk and f kN can be

written as

[N ]i; j=




∫
�
 j

@uxk−1

@x
 i d� 16i; j6n∫

�
 j−n

@uxk−1

@y
 i d� 16i6n n+ 16j62n∫

�
 j

@uyk−1

@x
 i−n d� 16j6n n+ 16i62n∫

�
 j−n

@uyk−1

@y
 i−n d� n+ 16i; j62n




(25)

and

[fN ]i=



[f]i +

∫
�

(
uxk−1

@uxk−1

@x
+ uyk−1

@uxk−1

@y

)
 i d� 16i6n

[f]i−n +
∫
�

(
uxk−1

@uyk−1

@x
+ uyk−1

@uyk−1

@y

)
 i−n d� n+ 16i62n




(26)

respectively. The convection–di�usion matrix Ak and the divergence matrix B are the same
as in (19) and (20), respectively.
The main advantage of Newton’s method (22) is that it will be locally and quadratically

convergent whenever the initial guess uh0 for the velocity is su�ciently close to a branch of
non-singular solutions (see Reference [8, pp. 362–367]). For this initial guess, we typically
use a mesh sequencing procedure.
Moreover, to describe this mesh sequencing algorithm, let hj, j=0; 1; : : : ; J be a sequence

of mesh spacings, such that h0¿h1¿ · · ·¿hJ , with the corresponding �nite element spaces
Xhj(�), Mhj(�), where

Xh0 (�)⊂Xh1 (�)⊂ · · · ⊂XhJ (�)

and

Mh0 (�)⊂Mh1 (�)⊂ · · · ⊂MhJ (�)

then the algorithm can be described as follows.

Algorithm 1.1 (Mesh sequencing algorithm)
For mesh level j=0; 1; : : : ; J solve the following linearized problems by performing Nj Newton
steps at each level.

1. Set the initial solution
(a) If mesh level j=0, then

let uh00 and ph0
0 be given.
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(b) else
set uhj0 = u

hj−1 and phj
0 =phj−1 .

2. For k=1; 2; : : : ; Nj solve the linear problem.
Find uhjk ∈Xhj such that uhjk |� = ghj and phj

k ∈Mhj satisfying

aN (u
hj
k−1; u

hj
k ; C

h) + b(phj
k ; C

h) = ( f ; Ch) + a1(u
hj
k−1; u

hj
k−1; v

h) ∀Ch ∈Xhj
0

b(uhjk ; q
h) = 0 ∀qh ∈Mhj

3. Set uhj = uhjNJ
, phj =phj

Nj
.

2. INEXACT NEWTON METHODS

Newton’s method is a very attractive way to solve systems of non-linear equations since in
most cases it converges rapidly from any su�ciently good initial guess. In this method the
non-linear system resulting from discretizing a partial di�erential equation is solved by �rst
applying a Newton linearization, then using a linear solver to solve the resulting linear systems
(the Jacobian systems) for each Newton iteration. However, in the computational process,
solving a system of linear equations by a direct method such as Gaussian elimination can be
ine�cient if the number of the unknowns is large, and may not be justi�ed when the iterate
is far from the solution. Therefore, it seems reasonable to solve the linearized system only
approximately using iteration. The resulting algorithm is categorised as an inexact Newton
method.
We denote the discretized system of non-linear equations by

F(w)=0 (27)

where F :Rn →Rn is assumed to be continuously di�erentiable in a neighbourhood of the
solution w∗, i.e. F(w∗)=0, and the Jacobian F ′(w∗) is non-singular.§ If wk is the approxima-
tion solution of (27) at the kth step, Newton’s method requires, for the next approximation
solution, the evaluation of F ′(wk) and the solution of the linear system

F ′(wk)sk =−F(wk) (28)

where wk+1 =wk + sk . For inexact Newton the solution sk of (28) is required to satisfy

‖F ′(wk)sk + F(wk)‖6�k‖F(wk)‖ (29)

where �k ∈ (0; 1] is called the forcing term.
Algorithm 2.1 (Inexact Newton Algorithm)

1. Let w0, �max ∈ [0; 1) be given;

§Newton’s method converges linearly if F ′(w∗) is singular.
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2. for k=0; 1; : : : until convergence.
• Choose �k ∈ [0; �max];
• Apply an iterative method to compute the solution sk of

F ′(wk)sk =−F(wk) stopping the process when the condition
‖F ′(wk)sk + F(wk)‖6�k‖F(wk)‖ is satis�ed;

• set wk+1 =wk + sk .

The forcing term controls the local convergence of an inexact Newton method. It is im-
portant to specify it correctly; if �k is too small, than it may lead to oversolving the Newton
equation. Oversolving may result in little or no decrease in ‖F‖ and, therefore, little or no
progress toward a solution. Thus, a less accurate approximation of the Newton step may be
both cheaper and more e�ective, see Reference [9] for details.
The following theorem describes the possible choices of the forcing term.

Theorem 2.1
Assume that (27) has solution w∗, F ′(w) is Lipschitz continuous and F ′(w∗) is non-singular.
Then there are � and �� such that if w0 ∈B(�), the ball of radius � about w∗, {�k}⊂ [0; ��],
then the inexact Newton iteration

wk+1 =wk + sk

where

‖F ′(wk)sk + F(wk)‖6�k‖F(wk)‖
converges q-linearly¶ to w∗. Moreover

• if �k → 0 the convergence is q-superlinear,¶ and
• if �k6K�‖F(wk)‖p for some K�¿0 the convergence is q-superlinear with q-order 1+p.

Proof
See Reference [10, p. 97].

2.1. An e�cient preconditioning strategy

Finite element methods applied to Picard linearization (16) or Newton linearization (22)
require the solution of a large sparse linear system of equations. The application of a Krylov
subspace iterative method to solve such a system produces iteration counts that are dependent
on both mesh size, h, and Reynolds number, Re, for a given tolerance. Hence, to limit the
growth of iteration counts, a preconditioner that produces little or no dependence on mesh size
is essential. The preconditioner should be e�ective so that the improvement in the convergence
rate will be more than enough to make up for the extra cost.
In this section, we brie�y discuss an e�cient preconditioning strategy for Krylov subspace

type methods applied to the linear system arising from a Newton linearization (22). The use
of Newton iteration is the main di�erence between this work and the work introduced by Kay
et al. in Reference [5].

¶For precise de�nitions, we refer to Reference [10, pp. 65–66].
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Here, we focus on the discrete system Lv= b associated with (24), written in the form(
A BT

B 0

)(
u

p

)
=

(
f

g

)
(30)

From now on the matrix A∈R2n×2n and vector f ∈R2n×1 refer to AN and fN in (24), respec-
tively.
Consider a right preconditioned system

[LP−1][Pv]= b

with block triangular preconditioning

P−1 =

(
A−1 R

0 −S−1

)
(31)

for matrices R∈R2n×m and S ∈Rm×m. Then

LP−1 =

(
I2n AR− BTS−1

BA−1 BR

)
(32)

The choice of R and S in (31) is optimal if they satisfy the relationship

AR− BTS−1 = 0; BR= Im

that is, R=A−1BTS−1 with S=BA−1BT. For this choice, it follows from (32) that the eigen-
values 	(LP−1)= {1}, and preconditioned GMRES converges to the solution of (30) in at
most two iterations; See Murphy et al. [11].
In the implementation of GMRES with a right preconditioner we need to compute the

solution of a system of the form Py= r at every GMRES step. Hence, for the optimal choice
R and S above, we seek a vector

(v
q

)
satisfying

(
v

q

)
=

(
A−1 A−1BTS−1

0 −S−1

)(
r

s

)
(33)

for given vectors r ∈R2n, and s∈Rm. Therefore the optimal preconditioner can be de�ned by
a two-stage process:

Solve for q: Sq=−s (34)

Solve for v: Av= r− BTq (35)

This two-stage approach reduces the problem of �nding preconditioners for (30) to that of
�nding good approximations of the actions of the inverse operators S−1 and A−1.
The subproblem (35) entails approximating the solution of a set of discrete scalar convection

di�usion equations. Hence the construction of A−1
v ≈A−1 is relatively straightforward. A−1

v
could be de�ned by applying a few cycles of a suitable multigrid method to the system. The
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construction of PS , the approximation to the Schur complement S=BA−1BT, however, is more
di�cult. In the Oseen case, a good choice PS for S was introduced by Kay et al. [5] and
analysed by Silvester et al. [6]. The technique is determined by the choice

PS =LpA−1
p Qp (36)

where Ap and Lp ∈Rm×m represent discrete approximations of convection–di�usion and scaled
Laplacian operators de�ned on the pressure space Mh with a standard Neumann boundary con-
dition, and Qp ∈Rm×m is the pressure mass matrix, i.e. [Qp]i; j=(�i; �j) for i; j=1; 2; : : : ; m.
This form of the PS approximation was derived from the Green’s tensor for the Oseen op-
erator in [5] as an approximation to the inverse of a continuous representation of the Schur
complement.
In a practical implementation, the computation of the preconditioner requires several sub-

sidiary computations. For each step of GMRES, the preconditioning entails an approximation
of the action of P−1

S de�ned in (36) as seen from the following factorization:

P−1 =

(
A−1 0

0 I

)(
I BT

0 −I

)(
I 0

0 −P−1
S

)

The two-stage preconditioning process (34) and (35), therefore, can be implemented as fol-
lows.

Algorithm 2.2 (Preconditioning process)

1. Compute the solution q by using the approximation P−1
S of S−1. This is done in three

steps:

(a) Application of multigrid iteration to a discrete Poisson problem with coe�cient
matrix Lp.

(b) A matrix–vector product involving the discrete pressure convection–di�usion ma-
trix Ap.

(c) A scaling step corresponding to the solution of a system with coe�cient matrix
given by the pressure mass matrix Qp.

2. Compute the solution v by applying a multigrid iteration for a diagonal blocks of the
Jacobian matrix AN in (24) de�ned by the matrix Av.

A good approximation to the Q−1
p in step 1(c) of Algorithm 2.2 can be attained using a

small number of (diagonally scaled) conjugate gradient iterations [5, 6].

3. NUMERICAL RESULTS I

In this section we present the results of numerical experiments with the Newton-GMRES
algorithm described in Section 2.1. We run all the experiments in Matlab 5.3. As a test
problem, we consider driven cavity �ow (the steady state Navier–Stokes problem) mod-
elled by Equations (1)–(3). These equations model the motion of a �uid in a unit square
({0¡x¡1; 0¡y¡1}) container (the domain �) whose lid at the boundary y=1 moves from
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Figure 1. Geometry for driven cavity model problem.

Figure 2. P2–P1 �nite element.

left to right. A representative solution is given in Figure 3. The geometry and boundary
conditions for the model problem are displayed in Figure 1.
The �nite element discretization uses a triangular mesh, for example see Figure 2, with

the so-called Taylor–Hood element pair; using piecewise quadratic functions on triangles to
approximate the velocity and C0 piecewise linear functions on triangles to approximate the
pressure (P2–P1). This pair is known to uniformly satisfy the stability condition (15); see
Reference [12, pp. 113–117].
The computation will follow Algorithm 1.1 by setting the initial guess uh00 = 0 at the coarsest

mesh level. Furthermore, when we solve the linearized problem at level j¿0 with a mesh
spacing hj, we need the solution uhj−1 generated on a mesh with spacing hj−1 and then
interpolate this solution onto the grid with spacing hj. The result u

hj
0 is used as the initial

guess at mesh level j. The Newton iteration is terminated when ‖F(uhj)‖2610−7‖F(uhj0 )‖2. In
this computation we use the ‘2 norm to measure the non-linear residuals, since the GMRES
method uses the scalar product with Euclidean norm.
In the approximation to the preconditioning process (34) described in Algorithm 2.2, we

implement

• one multigrid V-cycle with point Gauss–Seidel smoother with one pre- and post-
smoothing step on each level using the nodal ordering provided by Matlab PDE toolbox
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Figure 3. Streamline pattern for Re=400.

software (for step 1a), together with two CG (diagonally scaled conjugate gradient)
iterations (for step 1c), and

• two multigrid V-cycles using ILU(0) smoother with one pre- and post-smoothing step
on each level, for step 2.

At the coarsest grid level of the multigrid computation we will perform an exact solution.
We apply a simple linear interpolation as a prolongation (Ij

j−1) to transfer linear corrections
between grids, and its transpose (Ij−1

j ) as a restriction to transfer residuals between grids.
Furthermore, if the local mesh Peclet number is greater than unity on any grid, then a stream-
line di�usion term [14] is included in the discrete system of convection–di�usion problems.
See Reference [14] for details.
Finally, for the stopping criteria of the GMRES iteration, we implement two choices of the

forcing term �: keeping � to be constant on all iterations; or else choosing � to vary on each
Newton iteration as given in Theorem 2.1; that is �k =K‖F(uhjk )‖. We present the results in
both tabular and graphical form. In all tables, we tabulate the number of Newton iterations
k, the non-linear residual ‖F(uk)‖; ‖uk −uk−1‖, the average number of GMRES iterations per
Newton iteration �m, the maximum number of GMRES iterations mmax, and the total number
of �oating point operations in millions (M�ops).
In Figures 4 and 5 we plot the relative non-linear residual ‖F(uk)‖2=‖F(u0)‖2 against the

number of Newton iterations for the problem with uniform mesh size h=1=16. The solid,
dashed and dot–dashed curves are the plots of the relative non-linear residual for Re=50; 100
and 200, respectively.
From Table I, we can see that setting � to a constant for all iterations seems to be reasonable,

but the optimal choice of � itself is problem dependent. If �k is too large, the convergence of
the Newton iteration can be slow; 7 Newton iterations are needed for �k =0:1. Conversely,
if �k is too small, then there will be too many linear iterations and unnecessary work will
be needed. This e�ort can be wasted in the initial stage of the iteration, when the Newton
iterate is not within the radius of quadratic convergence. Figure 6, for example, shows the
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Figure 4. The convergence history of Newton’s methods for: (a) �=0:01 and (b) �=0:001.
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Figure 5. The convergence history of Newton’s methods: (a) �k =0:5‖Fk‖2 and (b) �k =0:1‖Fk‖2.

convergence history of Newton iterations for various � (=0:1; 0:01 and 0:001), with Re=50.
Newton’s method, in this case, needs 7, 4 and 3 iterations to converge to the given tolerance
for �=0:1; 0:01 and 0.001, respectively. The convergence rate of Newton is almost linear for
�=0:1 and 0:01; On the other hand for �=0:001, the convergence rate is close to being
quadratic. Since �=0:001 is too small for the problem with Re=50, then the solution of
the linear equation for the �rst step of Newton will reduce ‖F‖ far beyond the level that is
really needed. This over solving will engender little or no progress toward the solution. As a
consequence, Newton’s method will lose it’s quadratic convergence property. Hence, choosing
� to be a constant for the entire iteration in this case may not be most e�cient.
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Table I. The performance of preconditioned Newton-GMRES implementation
where the forcing term � is constant.

GMRES

� h Re Newton (k) ‖Fk‖2 ‖uk − uk−1‖2 �m mmax M�ops

50 7 4.1e-10 3.7e-7 12 14 227
1
16 100 7 1.4e-9 4.1e-6 17 20 308

0.1 200 7 2.0e-9 1.4e-5 35 41 641
50 7 8.5e-10 4.4e-6 13 15 991

1
32 100 7 9.0e-10 1.3e-7 19 22 1412

200 7 1.2e-9 2.1e-5 31 38 2377

50 4 12.7e-10 1.1e-5 17 19 185
1
16 100 4 14.6e-10 3.7e-5 25 28 264

0.01 200 5 0.4e-10 9.5e-7 47 51 628
50 4 65.3e-11 3e-5 18 19 805

1
32 100 4 77.1e-11 1.2e-4 25 29 1130

200 4 1.1e-9 4.3e-5 44 50 2075

50 3 26.7e-10 2.1e-4 22 23 162
1
16 100 4 0.1e-10 1.1e-7 33 35 324

0.001 200 4 0.4e-10 1.2e-5 59 62 622
50 3 9.1e-10 4e-4 23 24 723

1
32 100 3 16.7e-10 4.5e-4 31 33 996

200 4 4.5e-12 3.3e-6 59 62 2649
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Figure 6. The convergence history of Newton’s methods for Re=50.

Tables II and V describe the performance of Newton method for uniform and stretched
meshes, respectively. Here the forcing term is set to be di�erent on each non-linear iteration,
depending on the norm of non-linear residual, that is �k =K‖Fk‖, where K =0:5 and 0:1. With
this choice of forcing term, there is a chance that there will be more linear iterations when
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Table II. The performance of preconditioned Newton-GMRES implementations
where the forcing term �k =K‖Fk‖2.

GMRES

K h Re Newton (k) ‖Fk‖2 ‖uk − uk−1‖2 �m mmax M�ops

50 3 27.9e-12 5.2e-4 23 33 181
1
16 100 3 51.7e-12 13.6e-4 33 46 264

0.5 200 3 11.9e-10 78.9e-4 53 70 449
50 3 12.7e-12 7.7e-4 24 36 818

1
32 100 3 1.9e-12 3.8e-4 34 51 1172

200 3 14.2e-12 1.6e-3 55 73 2012

50 3 0.4e-12 0.7e-4 27 38 211
1
16 100 3 7.87e-12 6.4e-4 37 51 301

0.1 200 3 93.7e-12 40.2e-4 61 76 522
50 3 2e-14 5.6e-5 29 42 979

1
32 100 3 1.6e-13 1.3e-4 38 54 1249

200 3 2.6e-12 4.9e-4 64 79 2229

Table III. The performance of Newton-GMRES implementations with exact pre-
conditioning process and �k =0:5‖Fk‖2.

GMRES

h Re Newton (k) ‖Fk‖2 ‖uk − uk−1‖2 �m mmax M�ops

50 3 4e-11 3e-4 22 32 441
1
16 100 3 6e-10 1e-3 32 46 634

200 3 2e-8 8e-3 49 66 1016

50 3 1e-10 1e-3 23 35 4544
1
32 100 3 2e-11 5e-4 33 48 6586

200 3 1e-10 1e-3 52 69 10459

the Newton iteration is closer to the true solution. Hence, the solution of the linear equation
for the last step of Newton iteration will be more accurate. Note, the maximum numbers of
linear iterations presented in column 8 of Table II are the numbers of iterations on the last
step of the Newton iteration.
The convergence history is presented in Figures 5(a) and 5(b). The �gures show that

Newton’s method converges quadratically and stops after three iterations, for both K =0:5
and 0.1, and all Reynolds numbers Re=50; 100 and 200. In addition, Table II also show that
the choice of K =0:5 is more e�cient than that of K =0:1. Based on the results presented in
all tables it appears that �k =0:5‖Fk‖ is the best selection for this problem.
Furthermore, Table III illustrates the performance of Newton-GMRES where the precon-

ditioning process in Algorithm 2.2 is done exactly, i.e. using the back slash in Matlab to
e�ect the linear solution associated with matrices Lp;Qp and Av. We now compare this ta-
ble with Table II. In particular, we look at the average number of GMRES iterations per
Newton iteration ( �m) and maximum GMRES iteration count mmax from both tables. It seems
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Table IV. The performance of Newton-GMRES implementations with Picard
iteration as initial guess and h= 1

32 .

�m (GMRES) M�ops

�k Re Newton MG (RMG) MG (RMG)

0:5‖Fk‖2 500 5 125 (121) 8366 (8322)
0:5‖Fk‖2 1000 5 293 (264) 37438 (31385)
0:01 2000 6 317 (294) 45607 (41853)

Table V. The performance of preconditioned Newton-GMRES implementations
on non-uniform mesh, where the forcing term �k =K‖Fk‖2.

GMRES

K h Re Newton (k) ‖Fk‖2 ‖uk − uk−1‖2 �m mmax M�ops

50 4 1.0e-12 3.9e-5 29 52 311
1
16 100 3 2.9e-10 3.0e-3 36 53 295

0.5 200 3 5.5e-10 2.6e-3 58 80 508

50 3 1.1e-7 6.6e-1 28 47 989
1
32 100 3 8.1e-9 5.7e-2 35 56 1755

200 3 3.0e-11 3.3e-3 66 96 2551
400 3 1.0e-11 1.2e-3 121 175 5798

that these numbers are very similar. The last column of both tables, however, shows that
solving the preconditioner exactly needs more �oating point computation. This illustrates that
the multigrid used in the preconditioning process is working well.
In Table IV, we present the performance of the non-linear iterative method for higher

Reynolds number (i.e. Re=500, 1000 or 2000). In this case one step of the Picard iterative
method is applied to provide a good initial approximation for Newton’s method. It is worth
noting that without the Picard iteration, Newton’s method will diverge in this case. The table
also displays the average number of GMRES iterations per Newton iteration. Note that the
number in the bracket refers to multigrid GMRES with nodes numbered to follow the �ow
direction (RMG-GMRES). The table shows that Picard iteration can improve the convergence
of Newton’s method. In addition, numbering the nodes to follow the �ow direction gives a
small improvement in the convergence rate of the GMRES method. The last two columns of
the table, however, show that the improvement seems to be su�ciently e�ective to compensate
for the extra cost.
Finally, Tables I, II and Figure 7 show that the convergence rate of our preconditioned

GMRES algorithm is independent of the mesh size and is a slowly growing function of the
Reynolds number (as shown in Figure 8).

4. NUMERICAL RESULTS II: COMPARISON

We brie�y compare our results with those published in References [2, 4]. In Reference [2],
Ghia et al. use the coupled strongly implicit multigrid (CSI-MG) method to solve a two di-
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Figure 7. The average number of GMRES iterations per Newton iteration for �=0:1.
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Figure 8. A convergence history of GMRES iterations for various Reynolds numbers, �=0:1.

mensional Navier–Stokes problem. The main idea of this approach is to apply FAS-FMG (full
approximation scheme—full multigrid) to the non-linear problem with Gauss–Seidel smoother
and 9-point prolongation and restriction. The �nite di�erence discretization is implemented on
uniform grids. Table 1 in Reference [2], presents the results for velocity along the vertical
line through the geometric centre of the cavity on the �nest (129× 129) grid. In addition,
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Figure 9. Comparison of u-velocity for: (a) Re=100 and (b) Re=400; uniform mesh.
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Figure 10. Stretched grids.

we compare our results for Re=100 and 400 with h=1=32 with those in Reference [2]. To
do this, we plot the centre line velocity of our results. The graphics are displayed in Figure
9(a) and Figure 9(b). The solid line corresponds to our preconditioned Newton-GMRES solu-
tion and the small circles correspond to the reference solution in Reference [2]. At Re=100,
see Figure 9(a), the results are almost indistinguishable. Conversely, Figure 9(b) shows slight
disagreement in the results at Re=400. This di�erence arises since our computations were per-
formed on uniform meshes. To obtain better results we perform our computations on stretched
grids (see Figure 10), where there are more triangles at the corners. This non-uniform grid
will give better resolution at the corners, and then our results are in close agreement with
the reference results, as shown in Figure 11. Non-uniform spaced streamlines are displayed in
Figure 3. Note that the coarsest grid in our hierarchy is the 8× 8 non-uniform grid illustrated
in Figure 10.
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In Reference [4], Knoll and Rider solved the driven cavity problem using a Newton–Krylov
method (NKMG). A standard multigrid V-cycle is used as a preconditioner with �xed and
equal numbers of pre- and post-smoothing steps (V (
; 
)) on each level. The smoother is
a block SGS (symmetric Gauss–Seidel) method. For Reynolds number Re=100, non-linear
convergence tolerance ‖Fk‖2610−6 and the forcing term �k =0:01, the plot of the aver-
age of GMRES iterations per Newton iteration against the mesh level is presented in Fig-
ure 5 in Reference [4]. The iteration counts are obtained using GMRES(10) and GMRES(20)
preconditioned using one multigrid V-cycle with three smoothing sweeps (V (3; 3)) on each
level. On the coarsest level (10× 10) 15 block SGS steps are used. We take this result as our
�rst comparison. In particular, we will look at the convergence of our method using the same
non-linear tolerance and forcing term. However, in our preconditioning process we use one
V (1; 1) with a point Gauss–Seidel smoother for the Laplace operator and one V (1; 1) with an
ILU(0) smoother for the convection–di�usion operator.
Figure 5 in Reference [4] suggests that on the �nest grid (32× 32) and (64× 64) there

are about 8 and 9 GMRES(10) iterations per Newton iteration (equivalently 24 and 27 MG
cycles), respectively. Compared with our result which is 25 and 27 standard GMRES iterations
per Newton iteration, it seems that these iteration counts are comparable.
Furthermore, we consider the iteration counts in Table 8 in Reference [4]. For Re=100 with

the accuracy of 10−5 and �=0:05 (cf. our result in Table I with non-linear tolerance=10−7

and �=0:01) NKMG needed 11 V (10; 10) cycles with three Newton iterations (or equivalently
about 37 standard V (1; 1) cycles per Newton iteration) on the �nest (20× 20) and (40× 40)
grid (Table VI). Again our results are still competitive. In addition, the convergence rate of the
NKMG method seems to be sensitive to the number of smoothing steps. The exciting potential
of our method is the fact that the convergence rate is realized using only one smoothing step.
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Table VI. The performance of preconditioned Newton-GMRES implementations
on the non-uniform mesh, where the forcing term �=0:1.

GMRES

� h Re Newton (k) ‖Fk‖2 ‖uk − uk−1‖2 �m mmax M�ops

50 7 1.8e-9 4.0e-5 17 20 1258
0.1 1

32 100 7 2.1e-9 2.2e-5 20 25 1535
200 7 2.3e-9 1.9e-5 35 46 2767

5. CONCLUSIONS

We have demonstrated the performance of a proposed new preconditioning methodology ap-
plied to the incompressible Navier–Stokes equations. Through numerical experiments, we ob-
serve that the performance of our inexact Newton algorithm is independent of mesh size and
Reynolds number. However, the convergence rate of this non-linear iteration does depend on
the choice of a forcing term. Choosing the forcing term to be proportional to the non-linear
residual is advisable—this leads to second order convergence in the neighbourhood of the
solution. The attractive feature of our preconditioning methodology is that the convergence
rate of the linear iteration is not a�ected by mesh size and is relatively insensitive to Reynolds
number.
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